Пусть В=В1=90 градусов
тк ВН-высота то она перпендикулярна в данном случае гип. СА и С1А1
то есть угол ВНА=уголу В1Н1А1=90 градусов
А = углу А1(по условию)
тк СА=С1А1 то и ВН=В1Н1(свойство гипотенузы прям. тр. )
тогда НА=Н1А1=корень из (ВА*ВА-ВН*ВН)
то они равны по катиту НА и прилежашему острому углу А
EA+PC-QM-PA+QN+CF=(EA+AP+PC+CF)+(MQ+QN)=EF+MN
Так как в равнобедренном треугольнике высота, проведенная к основанию, является медианой и биссектрисой, высота и биссектриса, о которых идет речь проведены из вершины при основании.
Высота и биссектриса отличаются в 2 раза. Проведены они к одной стороне, значит высота в 2 раза меньше биссектрисы (перпендикуляр к прямой всегда меньше наклонной)
АН - высота, АМ - биссектриса.
АМ = 2АН, тогда в прямоугольном треугольнике АМН ∠АМН = 30°.
Обозначим ∠МАС = х, тогда ∠ВАС = ∠ВСА = 2х.
Для треугольника МАС угол АМВ - внешний, равен сумме двух внутренних, не смежных с ним.
∠АМВ = ∠МАС + ∠МСА = х + 2х = 3х
1) Пусть ΔАВС остроугольный, тогда ∠АМВ = 180° - 30° = 150°
3x = 150°
x = 50°, но тогда углы при основании равнобедренного треугольника равны по 100°, что невозможно.
2) ΔАВС - тупоугольный. ∠АМВ = 30°
3x = 30°
x = 10°
∠ВАС = ∠ВСА = 20°
∠АВС = 180° - (20° + 20°) = 140°