<span><span>Противоположные стороны параллелограмма равны.</span><span>Противоположные углы параллелограмма равны.
ПОЭТОМУ, ЕСЛИ ОДИН УГОЛ РАВЕН 40,ТО ПРОТИВ. ТОЖЕ 40
Т.К. СУММА УГЛОВ ПАРАЛ.РАВЕН 360,
360-80=280
280:2=140
Т.Е. 40, 40,120,120</span></span>
1) AC=AB⇒медиана AM по совместительству является высотой.
2) Медианы в точке пересечения делятся в отношении 2:1, считая от вершины. Используя AM:BF=8:5 и указанное свойство, а также в целях уменьшения числа дробей в решении, положим ОМ=8t; OF=5t; AO=16t; BO=10t.
3) Как известно, все три медианы треугольника делят его на 6 равновеликих треугольника, поэтому вместо использования ΔAOF можно использовать ΔBOM (кто этот факт не знает, может рассуждать, например так: у этих Δ есть равные углы (как вертикальные), а прилежащие к ним стороны таковы, что BF=2OF, а AO=2OM, поэтому формула для площади "половина произведения сторон на синус угла между ними" даст одинаковый ответ.
4) ΔBOM лучше тем, что он прямоугольный. По теореме Пифагора выражаем BM: BM²=BO²-OM²; BM=6t (на самом деле я не применял теорему Пифагора, а просто заметил, что этот Δ подобен египетскому).
5) Площадь ΔBOM=24=8t·6t/2 (половина произведения катетов), поэтому t²=1; t=1; BF=15t=15
Ответ: BF=15
Ответ:
106°
Объяснение:
Т.к. луч ОЕ делит угол АОВ на два угла, то угол АОВ= угол АОЕ+угол ЕОВ.
угол АОВ= 34+72=106°
Все стороны подобных многоугольников при соответствующих равных углах относятся в одном отношении w обозначил стороны многоугольника a1,a2.......an тогда у второго стороны будут wa1,wa2,........wan найдем теперь отношение периметров вынеся w за скобки p1/p2=w(a1......+an)/a1.....+an=w таким образом коэффицентами подобия отношения сторон равен отношению периметров то есть k=4/7 а отношение площадей равно квадрату коэффициента подобия то есть 16/49 тогда площадь 2 48*49/16=147 сошлось