Сумма квадратов первых n чисел Sn=n*(n+1)*(2*n+1)/6=(2*n³+3*n²+n)/6, поэтому Sn/(n³+3*n+2)=(2*n³+3*n²+n)/(6*n³+18*n+12). Разделив числитель и знаменатель этой дроби на n³, получим выражение (2+3/n+1/n²)/(6+18/n²+12/n³). Так как при n⇒∞ выражения 3/n, 1/n², 18/n² и 12/n³ стремятся к нулю, то искомый предел равен 2/6=1/3.