∡ВОА=180°-∡АОС (смежные углы)
∡ВОА=180°-140°=40°
Рассмотрим ΔВОА
∡ВОА=40° ; ∡ОАВ=∡АВО=х (углы при основании равнобедренного треугольника равны; возьмем неизвестные углы за икс)
Сумма углов в треугольнике ΔВОА равна 180°
∡ОАВ+∡АВО+∡ВОА=180°
х+х+40°=180°
2х=140⇒х=70° (∡ОАВ=∡АВО=70°)
∡АВО=∡В=70°
Рассмотрим ΔАОС
∡АОС=140° ; ∡ОАС=∡ОСА=х (углы при основании равнобедренного треугольника равны; возьмем неизвестные углы за икс)
Сумма углов в треугольнике ΔАОС равна 180°
∡АОС+∡ОАС+∡ОСА=180°
140°+х+х=180°
2х=40⇒х=20° (∡ОАС=∡ОСА=20°)
∡ОСА=∡С=20°
∡А=∡ОАС+∡∡ОАВ=20°+70°=90°
∡А=90°
Ответ: ∡А=90°; ∡С=20°; ∡В=70°
BK = MC (в равностороннес треугольнике все три медианы равны между собой)
KC = MB, т.к. AM = MB = 1/2AB = 1/2AC
Медианы в равностороннем треугольнике являются ещё высотами, поэтому угол CKB = углу CMB = 90°
Тогда ∆BMC = ∆BKC (по 1 признаку, либо по катета и гипотенузе)
Не понятная постановка вопроса.
Т.к. трапеция равнобокая, то углы при каждом основании равны между собой
<E=<N=50°
Пары углов (E и F) и (M и N) являются внутренними односторонними при двух параллельных и секущей, и их сумма равна 180°
Т.е. <F=180°-<E=180°-50°=130°
<M=<F=130°