<u>Задача на подобие треугольников.</u>
Сделаем рисунок и <u><em>рассмотрим треугольники АОМ и ВОС</em>.</u> Они подобны по двум углам.
Из подобия треугольников АОМ и ВОС
АО:ОС=АМ:ВС
АМ=АВ, т.к. это катеты равнобедренного прямоугольного треугольника АВМ с углами при основани ВМ=45°, поэтому
2:7=АВ:ВС
2ВС=7АВ
<em><u>Периметр прямоугольника АВСД=2ВС+2АВ</u></em>
Но 2 ВС=7АВ
Р=7АВ+2АВ=108 см
АВ=108:9=12 см
ВС=12·7÷2=42 см
Площадь прямоугольника равна
S=12·42=504 cм²
--------------------
В рисунке вычисления сделала немного иначе, на результат это не влияет.
Положим что прямая параллельная AC и проходящая через M , пересекает AB и AC в точках N и Y соотвественно , аналогично Z и X точки на BC и AC соотвественно , так же L , W на AC и BC .
Так как прямые па аралелльны , то четырёхугольники LMXA , MNBZ , MWCY параллелограммы .
Значит AL=XM , MY=WC , MX=BN .
Полученные три треугольника подобны между собой , получаем
(LN/MX)^2 = (27/12)
(ZW/MY)^2 = (3/12)
(MZ/LN)^2 = (3/27)
LN/MX=3/2
ZW/MY=1/2
MZ/LN=1/3
Откуда LN+AL = LN+MX = 5MX/2
Из подобия треугольников NML и ANY получаем
(LN/(LN+AL))^2 = 27/(27+S(ALMX) + 12)
Или 9/25 = 27/(39+S(ALMX))
Откуда S(ALMX) = 36
Аналогично и с двумя другими S(MNBZ)=18 , S(MYCW) = 12
Значит
S(ABC) = 27+12+3+36+18+12 = 108
Да, существует!.................