√(2х+5)+√(5х-6)= 5
ОДЗ 2х+5>0 x> -2,5 5x-6>0 x>0,12
(√(2х+5)+√(5х-6) )² = 5²
(√(2х+5))² + 2√(2х+5)*√(5х-6) +(√(5х-6))²= 25
2х+5 + 2√( (2х+5)*(5х-6) ) + 5х-6= 25
7х- 1 + 2√((10х²+25x-12х-30) = 25
2√((10х²+25x-12х-30) = 26-7x
( 2√((10х²+13х-30))² = (26-7x)²
4*(10х²+13х-30) =26²-364x+49x²
40х²+52х- 120 =676-364x+49x²
9x²-416x+796=0
D=173056-28656= 144400
x₁=(416+380)/18 =44 2/9 не подходит при подстановке
х₂= (416-380)/18 = 2
Проверка :
√(2*2+5)+√(5*2-6)= √9+√4=3+2=5
3²⁻ˣ= 3ˣ²⁻⁴ˣ
так как основания одинаковы
2-х=х²-4х
х²-3х-2=0
D=9+8=17
x₁=(3+√17)/2
x₂= (3-√17)/2
Дополнительные формулы:
*************************************
В данном случае проще решать построением, но если аналитически, то:
1) Система:
y=x^2
y=5
отсюда
x^2 = 5 => x=+/-sqrt(5)
т.о., точки пересечения: А( -sqrt(5); 5), B (sqrt(5);5)
2) Система:
y=x^2
y=2x
отсюда
x^2 = 2x => x=0 или x=2
подставляем найденные решения во 2 уравнение, находим y:
т.о., точки пересечения: А( 0;0), B (2;4)
<span>Найдите наибольшее и наименьшее значение функции f(x) = 3x</span>⁵<span> +5x</span>³<span> + 1 на отрезке [-2,2]
Найдем критические точки функции
</span>
<span>
найдем нули производной
</span>
<span>
определим что это за точка
___+_____0_____+______
Эта точка не является точкой максимума или минимума
Производная имеет положительный знак- значит наша функция возрастает, Значит наименьшее значение примет в точке -2, наибольшее в точке 2
проверим
y(2)=3*2</span>⁵+5*2³+1=96+40+1=137
<span>y(-2)=3*(-2)</span>⁵+5*(-2)³+1=-96-40+1=-135<span>
</span>