1)Проведу прямую через точку C трапеции ABCD,такую, что СE || BD. (здесь E - точка пересечения с продолжением основания трапеции AD). Поскольку СE || BD, а DE || BC - по определению трапеции, то DBCE - параллелограмм. а в нём противоположные стороны равны. Значит, CE = BD = 16.
2)Теперь можно рассмотреть ΔACE. Найду его стороны.CE = 16, AC = 30 - по условию. AE = AD + DE, а так как противоположные стороны в параллелограмме равны, то DE = BC. Следовательно,AE = AD + BC.Мы знаем, что средняя линия равна полосумме оснований.Отсюда следует, что AD + DE = 17* 2 = 34
Итак, AE = 34.
3)проведу высоту CH(пусть она будет обозначена как h). Далее можно заметить из того же треугольника, что 34² = 30² + 16², следовательно в этом треугольнике выполняется теорема Пифагора, откуда получаем, что он - прямоугольный. Видим, что высота h проведена к гипотенузе, значит, её можно расчитать по формуле h = ab/c, где a,b - катеты, c - гипотенуза.Получаем, h = 16 * 30 / 34= 14.12
4)Площадь трапеции равна произведению полосуммы оснований на высоту или произведению средней линии на высоту, значитS = 17* 14.12= 240.04 - это площадь трапеции.
А) 3/5*1/2*4/9=4/30=2/15
б) 4/5*10/27*15/16=15/54=5/18
9x+54=72 2) 9x=72-54 3) 9x=18 4) x=2 23(x-12)=552 1) 23x-276=552 2) 23x=552-276 3) 23x=276 4)x=12 15(2x+11)=285 1) 30x+165=285 2) 30x= 285+165 3) 30x=450 4) x=15 7(23-4x)=749 1) 861-28x=749 2) 28x= 861-749 3) 28x=112 4) x=4