Треугольники АОС и ВОD равны по двум сторонам и углу между ними так, как углы BOD и AOC вертикальные. Значит у треугольников все значения равны т.е. угол СBD=BCA=50 градусов, а сторона BD=AC=15см
АВ=21х, АС=28х, ВС=20х
По свойству биссектрисы:
АВ/ВД=АС/СД или ВД/СД=АВ/АС=21/28=3/4
ВС=ВД+СД=ВД+4ВД/3=7ВД/3
АС/АФ=ВС/ВФ или АФ/ВФ=АС/ВС=28/20=7/5
АВ=АФ+ВФ=АФ+5АФ/7=12АФ/7
ΔАВС и ΔАВД имеют одинаковые высоты, опущенные из вершины А, значит <span>отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты) Sавс/Sавд=ВС/ВД=7ВД/3 / ВД=7/3
</span>Sавс=7Sавд/3
Также ΔАФД и ΔАВД имеют одинаковые высоты, опущенные из вершины Д, значит Sавд/Sафд=АВ/АФ=12АФ/7 / АФ=12/7
Sафд=7Sавд/12
Отношение Sафд/Sавс=7Sавд/12 / 7Sавд/3=1/4
Доброго времени суток! Решение данного задания предоставлено на листе А4 чёрными чернилами, надеюсь моя помощь поможет Вам правильно усвоить данный предмет.
С уважением, SkOrPiOnUs!
По теореме Пифагора
ВС²+АС²=АВ²
ВС=АС=3√2
по скольку МА перпендикулярно плоскости треугольника, то СМА и МАВ- прямоугольные треугольники
MA=AC·tg60=3√6
MB²=MA²+AB²=54+36
MB=3√10
S = (a+b)h :2
S = (7+21)*12 :2
S = (28*12):2
S = 168 ед²