Ответ:С
Объяснение: В треугольнике против меньшей стороны лежит меньший угол!
из АВ< АС<ВС. видно, что это АВ
против АВ в треугольнике АВС лежит угол С
Угол между синей биссектрисой и длинным катетом 45°
Угол между медианой и длинным катетом на 15° меньше
45 - 15 = 30°
Медиана и половинки гипотенузы образуют два равнобедренных треугольника.
Один, остроугольный, с углами при основании 30 30 и
180 - 2*30 = 120°
Второй, остроугольный, и у него углы при основании 60 и 60 градусов, угол при вершине
180 - 60 - 60 = 60 градусов, и он равносторонний
Ответ - 60 градусов
Пусть трапеция имеет вершины АВСD. Угол D=45(гр.) ну он тип угол при основании.
По свойству прямоугольной трапеции наименьшая боковая сторона - это сторона при прямом угле. Т.е. АВ=9. То есть и высота в трапеции равна 9.
Строим высоту СН=9( только что писала почему равную 9). И рассматриваем треугольник СDH: угол CHD - прямой, угол D=45(гр.), следовательно и угол HCD=45(гр.)(180-90-45=45)
Значит, треугольник СНD - равнобедренный и СН=НD=9.
Найдем, чему равна боковая сторона СD. По теореме Пифагора: CD^2=81+81=162==> CD= 9 корней из 18 ( не могу вставить формулу: выглядит примерно так 9\|18'
Известно, что сумма боковых сторон трапеции равна сумме оснований: тогда сумма оснований равна ==> 9+(9\|18':2)+(9\|18':2) (НD+AH+BC)
А площадь трапеции равна: 1/2 суммы оснований умноженная на высоту, т.е. (НD+AH+BC)*CH= 1/2(9+9\18')*9=4,5*(9+9\|18')=4,5*9+4,5*9\|18'=40,5+40,5\|18'
Может это как то преобразуется, но по-моему решается так..;)
А рисунок?
Так не особо понятно просто...