(sin21·cos9+cos159·cos99)\(sin20·cos10+cos160·cos100)=(sin21·cos9+cos(180-21)·cos(90+9))\(sin20·cos10+ cos(180-20)·cos(90+10))=
(sin21·cos9+cos21·sin9)\(sin20·cos10+cos20·sin10)=(sin(21+9))\sin(20+10)=
sin30\sin30=1
1)
(2t+4.3)(7t+8)=14t²+16t+30.1t+34.4=14t²+46.1t+34.4
2)
(-7-p)(m-4)=-7m+28-pm-4p
3)
(t+1)(t-7)-t²=t²-7t+t-7-t²=-6t-7
-6(-5)-7=30-7=23
4)
90z²+4=(5z+1)(18z+5)
90z²+4=90z²+25z+18z+5
4=25z+18z+5
4=43z+5
-43z=5-4
-43z=1
z=-(1/43)
5)
(0.1z+4s)(0.01z²-0.4zs+16s²)
0.001z³-0.16z²s+1.6zs²+0.04z²s-1.6zs²+64s³
0.001z³-0.12z²s+64s³
6)
(2u²+3)(3u-9)*u²=(6u³-18u²+9u-27)u²
6u^5-18u⁴+9u³-27u²
7)
(q-2)(7q+1)(4q-7)=(7q²+q-14q-2)(4q-7)
(7q²-13q-2)(4q-7)=28q³-49q²-52q²+91q-8q+14
28q³-101q²+83q+14
Первое уравнение: y = √(x²-8x+16) - 1 = √(x-4)² - 1 = |x-4| - 1
Подставим во второе уравнение
3x - |x-4| + 1 = 1
3x - |x-4| = 0
Если x≥4, то 3x - x + 4 = 0;
2x = -4
x=-2 - не удовлетворяет условию
Если x<4, то 3x + x - 4 = 0
4x = 4
x = 1
y = | 1 - 4| - 1 = 3 - 1 = 2
Разность: 1 -2 = -1