некоторые уточнения к фото. тр-к NMQ раанобедренный так как MQ=NQ. Значит, FQ-и высота и биссектриса. из тр-ка MQF(прямоугольного так как FQ высота) угол MQF =90-75=15 так как FQ и биссектриса то угол Q=2×15=30. остальное на фото
<span>Если из одной точки проведены к окружности касательная и секущая, то произведение всей секущей на её внешнюю часть равно квадрату касательной.
В нашем случае АВ</span>² = AF*AE или 81 = 15*АЕ, откуда АЕ = 81/15.
<span>EF = AF - AE = 15 - 81/15 = 144/15 = 9,6см </span>
треугольники АОМ и ОВМ прямоугольные, ОА и ОВ - радиусы- перпендикуляры, проведенные в точки касания, треугольниу АОВ равнобедренный, ОА=ОВ=радиус, ОК-(К пересечение ОМ и АВ) =высота, медиана, биссектриса, уголАОК=уголВОК=уголАОВ/2=60/2=30, треугольник АОМ, АМ=1/2ОМ=24/2=12=ВМ - как касательные проведенные из одной точки, ОА=ОМ*cos30=24*корень3/2=12*корень3, треугольник ОАК прямоугольный, АК=1/2ОА=12*корень3/2=6*корень3, АВ=2*АК=2*6*корень3=12*корень3, периметр АМВ=12+12+12*корень3=12*(2+корень3)