a) a^2b-a-ab^2+b-2ab+2=группируем попарно: (a^2b-a) -(ab^2-b) -(2ab-2)=
=a(ab-1)-b(ab-1)-2(ab-1)=(ab-1)(a-b-2)
b) -25a+10a^2-a^3=-a(25-10a+a^2)=-a(5-a)^2
-x³+3x²+9х-29 найдем производную данной функции (-x³+3x²+9х-29)' = -3x²+6x+9 приравниваем к 0 -3x²+6x+9=0 -3(x²-2x-3)=0 решаем Д=4 х1=(2+4)/2=3 и х2=(2-4)/2=-1 найденные точки 3 и -1 принадлежат данному отрезку [-1;4], поэтому вычисляем значения этой функции в этих точках
f(3)=-x³+3x²+9х-29= -(3)³+3*(3)²+9*3-29=-27+27+27-29=-2
f(-1)=-x³+3x²+9х-29= -(-1)³+3*(-1)²+9*(-1)-29=1+3-9-29=-34
Наибольшее значение этой функции -2!