<span>2sin(π + x) – 5cos(</span>π/2 + x)<span><span> + 2 = 0</span></span><span><span />
2 sin</span>²<span>x</span><span> – 5sinx
+ 2 = 0</span>
Вводим промежуточную переменную
t = sinx
<span>2t</span>²<span> -
5t + 2 = 0
</span><span> а = 2; b = -5; c = 2<span>
</span>D = b² - 4ac = (-5)² - 4 *2 * 2 = 25 - 16 = 9<span>
</span>t1 = <u>-</u><u> b</u><u /><u> </u><u>+</u><u> </u><u>√</u><u>D</u><u /><u> </u> = <u>-</u><u> </u><u>( -
5) +</u><u> </u><u>√9 </u><u> </u> = <u /><u> </u><u>5 +</u><u> </u><u>3 </u><u> </u> =
2 НЕ принадлежит интервалу [-1; 1]</span><span><span>
2</span>a 2 * 2 4<span>
</span></span><span>t2 = <u>-</u><u> b</u><u /><u> </u><u>+</u><u> </u><u>√</u><u>D</u><u /><u> </u> = <u>-</u><u> </u><u>( - 5)
-</u><u> </u><u>√9 </u><u> </u> = <u /><u> </u><u>5</u><u> </u><u>- </u><u> </u><u>3 </u><u> </u><span> = <u> 1 </u></span></span><span>
2a 2 * 1 <span>4 2</span></span>
<span>sinx
= 1/2
<span /></span><span>x = (-1)^k (</span>π/6)<span><span> + πk,
kͼZ</span><span>
</span></span>
Y=4-x² y=2-x S-?
4-x²=2-x
x²-x-2=0 D=9 √D=3
x₁=-1 x₂=2
S=₋₁²(4-x²-2+x)dx=₋₁²(2+x-x²)dx=(2x+x²/2-x³/3) ₋₁|²=
=2*2+2²/2+2³/3-(2*(-1)+(-1)²/2-(-1)³/3)=4+2-8/3-(-2+1/2+1/3)=6-8/3-(-1,5+1/3)=
=6-8/3+1,5-1/3=7,5-3=4,5.
Ответ: S=4,5 кв. ед.
(a-5/a+5 - a+5/a-5) : 10a/25-a^2=2;
1) (a-5)(a-5) - (a+5)(a+5) / (a-5)(a+5)= -20a/a^2-25
2) -20a/a^2-25 * 25-a^2/10a;
-20a/a^2-25 * a^2-25/-10a;
-20a/-10a=2
2=2