Ответ:
У них одна сторона общая а две другие продолжение
Длина хорды АВ=2rsin(α/2). r=6, α=(360/3)/2=60 в градусах. AB=12*0,5=6.
AP=7. Высота треугольника сечения h^2=AP^2-(AB/2)^2=40. h=6,32.
Площадь сечения конуса АВР S=h*(AB/2)=6,32*3=18,96 единиц площади.
1) Каждая грань этой призмы - параллелограмм. Чтобы найти площадь боковой поверхности, надо найти площадь каждого параллелограмма и сложить. Площадь параллелограмма находят по формуле S=а ·h (а - основание, h - высота)
2) С1В1ВС: в этом параллелограмме основание ВВ1, а высота KN. (по условию KN⊥BB1) Тогда S(С1В1ВС)=12·4 =48
3) АА1В1В: в этом параллелограмме основание ВВ1, а высота МN. (по условию МN⊥BB1) Тогда S(АА1В1В)=12·3 = 36
Остался параллелограмм АА1С1С.
4) По условию прямая ВВ1 перпендикулярна двум пересекающимся прямым в плоскости MNK, значит, она перпендикулярна всей плоскости MNK, а значит, каждой прямой в этой плоскости. В частности, ВВ1⊥МК. 5) Так как прямая АА1 параллельна ВВ1, то АА1⊥МК. Значит, в параллелограмме АА1С1С основание АА1, а высота МК. Тогда S(АА1С1С)=АА1·МК
6) МК найдем из прямоугольного треугольника MNK по теореме Пифагора (MK=5)
7) S(АА1С1С)=12·5=60
8) S(бок)=48+36+60=144
Ответ: 144