Ответ:
Расстояние от точки S до сторон трапеции равно 5 см.
Объяснение:
Расстояние от точки S до сторон трапеции - это перпендикуляры, проведенные из этой точки к сторонам. Опустим перпендикуляр SO на плоскость трапеции и соединим точку О с концами перпендикуляров от точки S до сторон. По теореме о трех перпендикулярах проекции расстояния от точки S до сторон перпендикулярны сторонам трапеции. Если наклонные (расстояния от S до сторон) равны, то равны и их проекции. Следовательно, точка S проецируется в центр вписанной в трапецию окружности, радиус которой равен половине высоты трапеции, то есть
R = 3√2 см.
Расстояние от точки S до сторон трапеции - это гипотенуза прямоугольного треугольника с катетами - √7 см и 3√2 см.
По Пифагору: L = √(7+18) = 5 cм.
Думается так: Чтобы отсекаемый биссектрисой угла при основании, треугольник был подобным, надо чтобы угол при основании был в два раза больше угла, который напротив основания.
Т.о. Если равнобедренный треугольник ABC у которого AC основание, то для углов A, B, C будет справедливо следующее:
Углы треугольника 72, 36, 72
По теореме косинусов:a^2=b^2+c^-2*b*c*cosα
a^2=5^2+21^2-2*5*21*cos60
a^2=25+441-210*(1/2)
a^2=361
a=19