√6⁶*3⁸=6³*3⁸=36*6*9⁴=216*81²=216*6561=1 417 176
Решение смотри в приложении
ответ 10
Найти промежутки возрастания и убывания функции, а также точки максимума и минимума. y= x^2*e^(-x^2)
Найдем производную функции
y' =(x^2*e^(-x^2))' = (x^2)' *e^(-x^2)+x^2*(e^(-x^2))' = 2x*e^(-x^2) -x^2*2x*e^(-x^2) =
=2xe^(-x^2)(1-х^2)
Найдем критические точки
y' =0 или 2x*e^(-x)(1-х^2) =0
x1=0 (1-х)(1+x)=0 или х2=1 x3 = -1
На числовой оси отобразим знаки производной
..-... 0..+.. 0....-....0...+...
--------!--------!----------!--------
......-1....... 0 .......1........
Поэтому функция возрастает если
х принадлежит (-1;0)U(1;+бесконечн)
Функция убывает если
х принадлежит (-бескон;-1)U(0;1)
В точке х=-1 и х=1 функция имеет локальный минимум
y(-1) = (-1)^2*e^(-(-1)^2) = e^(-1) =1/e = 0,37
y(1) = (1)^2*e^(-(1)^2) = e^(-1) =1/e = 0,37
В точке х= 0 функция имеет локальный максимум
y(0) = 0^2*e^(-0^2) = 0
[x²(x + 4) + 1 - 3x)] = [16*(x + 4) - 3x + 1]
x³ + 4x² + 1 - 3x = 16x + 64 - 3x + 1
ОДЗ: x+ 4 ≠ 0, x ≠ - 4
x³ + 4x² - 16x - 64 = 0
x²(x + 4) - 16(x + 4) = 0
(x + 4)(x² - 16) = 0
x + 4 = 0, x = - 4 не удовлетворяет ОДЗ
x² - 16 = 0
x² = 16
x₁ = - √16
x₁ = - 4 не удовлетворяет ОДЗ
x₂ = √16
x₂ = 4
Ответ: x = 4