Рассмотрим треугольники СМО и КОА.
СО=АО
КО=ОМ
∠СОМ=∠КОА(вертикальные углы)
Отсюда следует, что эти равны по двум сторонам и углу между ними
В равных треугольниках соответствующие углы тоже равны.
∠А=∠С
∠К=∠М
Рассмотрим прямые MС и AК при секущей КМ
∠Ми ∠К - накрест лежащие. Накрест лежащие углы равны при || прямых.
Дано:
МК-средняя линия,
АD=DM, EC=KE
АС=8 cм
АМКС-?
DE-?
Решение.
МК-средняя линия по условию⇒ МК║АС. Геометрическая фигура, у которой 2 стороны параллельны, а 2 нет является трапецией, значит АМКС-трапеция.
АМ=МВ, ВК=КС-по условию, так как МК-средняя линия ΔАВС. Значит МК=1/2АС, МК=1/2*8=4см.
AD=MD KE=EC, значит DE║MK║AC, DE- средняя линия трапеции. ⇒DE=(MK+AC)/2
DE=(4+8)/2=6см.
Ответ: АМКС-трапеция, DE=6см
Task/26684431
---------------------
см приложение
У меня только решение мы в школе такое тут раз проходили кажется правильно написал
S = 1/2* a*b*sinα
S = 1/2* 3*8*sin30 = 12*sin30 = 12*1/2 = 6
Ответ: S = 6 см
Т.к. у них отсутствовали современные способы наблюдения, то можно сделать вывод, что... глазами