Данные полупрямые имеют начальной точкой либо точку A, либо точку C.
Рассмотрим сначала полупрямые с начальной точкой A (полупрямые AB и AC). Точка C лежит между точками A и B, так как по условию задачи она принадлежит отрезку AB. Значит, точка A не лежит между точками B и C, т. е. точки B и C лежат по одну сторону от точки A. Поэтому полупрямые AB и AC совпадающие.
<span>Рассмотрим теперь полупрямые с начальной точкой C (полупрямые CA и CB). Точка C разделяет точки A и B. Поэтому точки A и B не могут принадлежать одной полупрямой, а значит, полупрямые CA и CB дополнительные.</span>
Так как ДМ перпендикуляр, то тр-ки ВМД и АМД - прямоугольные с общим катетом ДМ.
Пусть ВМ = х, тогда АМ = 14 - х
Выразим из тр-ка ВМД:
ДМ² = 13² - х²
Выразим из тр-ка АМД:
ДМ² = 15² - (14 - х)²
Приравняем:
169 - х² = 225 - (14 - х)²
169 - х² = 225 - 196 - х² + 28х
28х = 140
х = 5 см
ДМ = √(169 - 25) = 12 см