1. Рассмотрим вариант когда вершина закрашенного треугольника попадает на середину стороны BC, обозначим ее через т.M. Тогда Если провести вертикальную прямую MN из точки М перпендикулярно к стороне AD (середина AD) и откинуть левую или правую часть, то будет очевидно, что площадь закрашенной части равна площади не закрашенной, отсюда следует, что площадь двух не закрашенных частей равна площади закрашенного треугольника AMD = 10,5 см². То есть площадь всего прямоугольника равна 10,5 +10,5 =21 см²
2. Если точка М находится не на середине стороны BC, а левее или правее ее середины. Тогда площадь одного из не закрашенных треугольников уменьшается, но на столько же площадь второго увеличивается, то есть площадь всего не закрашенного участка остается неизменной и равняется площади закрашенного. То есть площадь всего прямоугольника равна 10,5 +10,5 =21 см²
<u> 2,4 х 0,9=2,16
</u>2,16<u> х 2,1=4, 536
</u><u>0,25 :</u><u>4, 536=0,055</u><u>
</u>
0,5; 0,8; 2; 30, 40, 90, 200; 1000
Слово «гипотеза»-научное предположение, выдвигаемое для объяснения каких-нибудь явлений.
3. 75/3=25 одна пятая часть поля
5*25=125 площадь поля
4 я не знаю