Угол АОВ=30 градусов ( потому что если катет (расстояние от точки А до радиуса ОВ) в прямоугольном треугольнике равен половине гипотенузы(радиуса), то противолежащий угол равен 30 градусам.)
Следовательно, дуга АВ=30 градусам (т. к. <span>центральный угол = дуге на которую он опирается)</span>
Там получится окружность с диаметром в 5 сан
С точки А проведены две наклонные к плоскости, обозначим АВ иАС, АВ=5х, АС=8х. высота АД-Н.
АВ:АС=5:8, АВ=5х, АС=8х,
по теореме Пифагора
н=корень(5х)^2-7^2,
н=корень(8х)^2-32^2, приравняем оба равенства
5х^2-7^2=8х^2-32^2отсюда находим х=5,тогдаАВ=25, значит
Н=24
Дано: AC║BD; ∠ACB = 25°; BC - биссектриса ∠ABD
Найти: ∠BAC
∠CBD = ∠ACB = 25° - как накрест лежащие углы при параллельных прямых и секущей СВ.
ВС - биссектриса ∠ABD ⇒ ∠ABC = ∠CBD = 25°
ΔACB :
∠BAC + ∠ABC + ∠ACB = 180°
∠BAC + 25° + 25° = 180°
∠BAC = 180° - 50°
∠BAC = 130°
Радіус - гіпотенуза прямокутного трикутника в якому відстань від центру до хорди -один катет і половина хорди -другий катет
За теоремою Піфагора
Хорда = 2* √(29 в квадраті - 20 в квадраті)=2* √441=42