6cos^2(x)+5sin(x)-2=0
6(1-sin^2(x))+5sin(x)-2=0
6-6sin^2(x)+5sin(x)-2=0
6sin^2(x)-5sin(x)-4=0
Квадратное уравнение относительно sin(x)
D=5^2-4•6•(-4)
D=25+16•6
D=25+96
D=121
Первый корень: sin(x)=(5+11)/12=4/3
У нас есть ограничение нашего корня [-1;1]
4/3 не подходит
Второй корень: sin(x)=(5-11)/12=-1/2
sin(x)=-1/2
x=(-1)^{k+1}•arcsin(1/2)+πk
x=(-1)^{k+1}•π/6+πk
Это ответ ,но можно записать по другому
x=7π/6+2πk и x=11π/6+2πk
k пренадлежит Z
a² - 3a + b² + 3b - 2ab = (a² - 2ab + b²) - (3a - 3b) = (a - b)² - 3(a - b) =
= (a - b)(a - b - 3);
<span>125 х^4 у -225х^3у^2+135х^2у^3-27 ху^4=xy(125x</span>³-225x²y+135xy²-27y²)=
<span>=xy(5x-3y)</span>³<span>
27а^3в-27а^3в^2+9а^3в^3-а^3в^4=a</span>³b(27-27b+9b²-b³)=a³b(3-b)³
Действительно, решений на множестве действительных чисел данное уравнение не имеет. Это можно доказать так:
пусть sin15x = n,
sinx - n*cosx = 3/2
√(1+n^2)(sinx/√(1+n^2) - n*cosx/√(1+n^2)) = 3/2 (метод введения вспомогательного угла)
√(1+n^2)*sin(x-y) = 3/2, где 1/(√(1+n^2)) = cosy
sin(x-y) = 3/[2*√(1+n^2)], потому 3/[2*√(1+n^2)]< или = 1 (по свойству синуса)
Отсюда выражаем n:
n^2 ≥ 5/4, (sin15x)^2≥ 5/4, что невозможно.
Следовательно, уравнение решений не имеет.