.........................................
Площадь основания равна площади сечения, умноженной на косинус угла наклона.
So = 8√3*cos 60° = 8√3*(1/2) = 4√3.
Отсюда находим сторону основания по формуле площади равностороннего треугольника:
S = а²√3/4.
Сторона равна: а = √(4So/√3) = √(4*4√3/√3) = 4.
Находим высоту h основания (она равна проекции высоты сечения на основание):
h = a*cos 30° = 4*(√3/2) = 2√3.
Высота H призмы равна:
H = 2h*tg 60° = 2*2√3*√3 = 4*3 = 12.
Периметр основания Р = 3а = 3*4 = 12.
Площадь боковой поверхности Sбок = РН = 12*12 = 144.
Полная площадь поверхности призмы равна:
S = 2So + Sбок = 2*4√3 + 144 = 8√3 + 144 ≈ <span><span>157,8564 кв.ед.</span></span>
Даны вершины параллелограмма АВСД: А (-2, 3, 1), В (-3, 1, 5), С (4; 1; 3).
Диагонали, пересекаясь, делятся пополам.
Есть диагональ АС, её середина точка О(1; 2; 2).
Теперь можно найти длину диагонали ВД:
ВД = 2ВО = 2*√(16 + 1 + 9) = 2√26 ≈ 10,19804.
.
Задача 1
Сумма смежных углов равна 180°. Обозначим один из углов как α. Тогда:
— меньший угол.
— больший угол.
Ответ: больший угол равен 162°.
Задача 2
Обозначим боковую сторону как
. Сумма углов любого треугольника равна 180°. Поэтому имеем:
Ответ: 13 см.