Диагонали ромба равны 16 и 30 сантиметров. Найти периметр ромба.
Дано: АВСД-ромб АС и ВД-диагонали АС=16 см ВД=30 см
Найти: Р-периметр АВСД
Решение:1) АС пересекается с ВД в точке О Треугольник АОВ-прямоугольный. т.к. известно, что диагонали ромба взаимно перпендикулярны.
По теореме Пифагора найдём сторону АВ.АВ=sqrt{OA^2 + OB^2}=sqrt{8^2+15^2}=sqrt{289}=17(см)
2)АВСД-ромб, следовательно все его стороны равны
Периметр Р=4*АВ=4*17=68(см) Ответ: 68 см
360/(6+11+19)=10, тогда меньший угол равен 6*10/2=30
В самом внизу слева - это продолжение задачи 4.
∠ODA=∠OAD=180-70/2=110/2=55°
∠CDO=90-55=35°=∠DCO