А-50°
б-75°
в-100°
г-72°
д-120°
е-80°
ж-36°
В прямоугольном треугольнике угол <span>между высотой CH и биссектрисой CM, проведенными из вершины прямого угла, равен половине разности острых углов треугольника.
Угол А = 90</span>°<span> - 56</span>°<span> = 34</span>°.
Тогда искомый угол равен (56° - 34°)/2 = 22°/2 = 11°.
Это вытекает из рассмотрения прямоугольного треугольника, где катет при угле 56 градусов является гипотенузой.
Второй острый угол в нём равен 34°.
А угол до биссектрисы равен 45°.
Отсюда получаем 45°-34° = 11°.
Рассмотрим ΔАВD. Он - прямоугольный, так как ВD⊥АВ⇒∠DВА=90°. Найдем ∠АDВ по теореме о сумме ∠Δ:
∠АDВ=180°-60°-90°=30°
Рассмотрим ∠ВDА и ∠DВС, учитывая, что ВС∫∫АD(по определению трапеции): эти углы накрест лежащие при парал. прям. и сек. ⇒ они равны(по св-ву парал. прям) ⇒ ∠АDВ=∠СВD=30°.
При этом, ВD - так же биссектриса ∠D⇒∠АDВ=∠ВDС=30° ⇒ ∠D=60°
⇒ АВСD - равнобедренная трапеция(по признаку)
Найдем ∠DСВ. Рассмотрим ΔВСD: ∠В=∠D=30 ⇒ найдем ∠С по теореме о сумме ∠Δ: 180°-60°=120°
∠DCВ=∠АВС(по опр. равноб. трап.) ⇒ АВС=120°
Ответ: 60°, 60°, 120°, 120°
Строишь развернутый угол. С помощь циркуля и линейки делишь его пополам. Получаешь угол 90 градусов.
Затем угол 90 градусов делишь пополам и получаешь два смежных угла по 45 градусов.
Один из углов оставляешь, а другой угол 45 градусов делишь ещё раз пополам и получаешь два смежных угла по 22 градуса и 30 минут.
И ещё на два равных угла делишь смежный, который у тебя 22 градуса и 30 минут. Ну и получаешь свой родной 11°15′ ;)