Lg(2x - 4) ≤ lg(3x - 5
так как 10 > 1, то
2x - 4 ≤ 3x - 5
2x - 3x ≤ - 5 + 4
-x ≤ -1
x ≥ 1
x ∈ (1; + ≈)
Х² + рх - 16=0, х=-2
(-2)² +р(-2)-16=0
4-2р-16=0
2р=-12
p=-12/2
p=-6
x²=(-2)²=4
(2x -3)/(5x -20) -(x-2)/(2x-8) =(2x -3)/5(x -4) -(x-2)/2(x-4) = (2(2x-3) -5(x-2) )/10(x-4) =
(4x-6 -5x+10)/10(x-4) = (-x +4)/10(x-4) = -(x-4)/10(x-4) = -1/10 = -0,1.