4a(4c-8) = 16ac-32a
16ab(3c-6) = 48abc-96
Это совсем простая задача, у-задана и надо найти х.
2,2=16х-5,8 16х=2,2+5,8 16х=8 х=8/16 х=0,5
Упростим
3x(x² <span>+ * - 2x) - 2(3x</span>³<span> - 2x + 3) =
= </span>3x³ + 3х·* - 6x² - 6x³ + 4x - 6 =
= 3х·* - 3х³ - 6х² + 4х - 6
Первый член 3х·* должен иметь четвёртую степень, т.е. 3х нужно умножить на такой одночлен ах³ .
Упростим первый член 3х·ах³ многочлена:
3х ·ах³ = 3ах⁴
Многочлен теперь имеет вид:
3ах⁴ - 3х³ - 6х² + 4х - 6
А дальше найдём <span>сумму его коэффициентов, которая должна быть равна 4.
3а - 3 - 6 + 4 - 6 = 4
3а = 15
а = 15 : 3
а = 5
Получим 5х</span>³ - искомый одночлен.
<span>
Ответ: нужно вставить одночлен 5х</span>³<span>
</span>
Уравнение прямой: у = kx + m
-1 = k+m
2 = -3k+m
----------------система...
3=-4k ---> k=-3/4
m = -1-k = -1+3/4 = -1/4
уравнение прямой: у = (-3/4)x - 1/4
4y = -3x - 1
найдем точки пересечения прямой с осями координат)))
х=0 ---> y = -1/4
y=0 ---> x = -1/3
получился прямоугольный треугольник с вершиной прямого угла в точке (0;0)
и катетами (1/3) и (1/4)
Площадь прямоугольного треугольника равна
половине произведения катетов)))
S = (1/3)*(1/4)*(1/2) = 1/24