<span>Преобразуем
5n^2+10=5*(n^2+2)
тем самым мы получаем что квадрат должен быть кратен 5.
Пусть 5*k - это число, квадрат которого должно образовать выражение 5*(n^2+2)
тогда
5*(n^2+2)=25*k^2
или
n^2=5*k^2-2
Произведение 5*k^2 оканчивается либо на 5 либо на ноль, следовательно разность 5*k^2-2 оканчивается либо на 8 ли на 3.
Получается что n^2 должен оканчиваться либо на 8 либо на 3, что не возвожно, так как квадраты могут оканчиваться на одно из чисел 0,1,4,5,6,9
Следовательно 5n^2+10 не может быть квадратом натурального числа.</span>
1. 1/4m^2 - 16n^2=(1/2m-4n)(1/2m+4n)
2. x^12-y^2=(x^6-y)(x^6+y)
3. 1/4-c^4=(1/2-c^2)(1/2+c^2)
4. x^4-y^4=(x^2-y^2)(x^2+y^2)=(x-y)(x+y)(x^2+y^2)