Ответ:
Объяснение:
Если начертить график этой функции
т.е график функции y=x^2-8x+15,то он будет пересекать ось ох в точках (3;0) и (5;0)
график находится ниже оси ox при X∈ [ 3 ; 5]
X∈ [ 3 ; 5]
1) sin^2 x + sin 2x - 3cos^2 x = 0
sin^2 x + 2sin x*cos x - 3cos^2 x = 0
Делим все на cos^2 x
tg^2 x - 2tg x - 3 = 0
(tg x + 1)(tg x - 3) = 0
tg x = -1; x1 = -pi/4 + pi*k
tg x = 3; x2 = arctg(3) + pi*n
2) 10sin^2 x + 5sin x*cos x + cos^2 x = 3sin^2 x + 3cos^2 x
7sin^2 x + 5sin x*cos x - 2cos^2 x = 0
Делим все на cos^2 x
7tg^2 x + 5tg x - 2 = 0
(tg x + 1)(7tg x - 2) = 0
tg x = -1; x1 = -pi/4 + pi*k
tg x = 2/7; x2 = arctg(2/7) + pi*n
3) 6sin^2(2x) - 4sin(4x) + 4cos^2(2x) = 1
6sin^2(2x) - 4*2sin(2x)*cos(2x) + 4cos^2(2x) = sin^2(2x) + cos^2(2x)
5sin^2(2x) - 8sin(2x)*cos(2x) + 3cos^2(2x) = 0
Делим все на cos^2(2x)
5tg^2(2x) - 8tg(2x) + 3 = 0
(tg(2x) - 1)(5tg(2x) - 3) = 0
tg(2x) = 1; 2x = pi/4 + pi*k; x = pi/8 + pi/2*k
tg(2x) = 3/5; x = 1/2*arctg(3/5) + pi/2*n
Во вторых скобках всё сокращается, а дальше там уже будет просто)
Объяснение: