Решение задачи указывает на некорректность её условия. Возможно, так и было задумано, чтобы найти в нём ошибку.
———
<span>ВВ1 перпендикулярен плоскости альфа, следовательно, этот отрезок <em>перпендикулярен любой прямой, проходящей в этой плоскости через В1. </em></span>
BD=6√2 по условию.
∆ ВАD- прямоугольный равнобедренный. Его острые углы равны 45°⇒
AD=BD•sin45°=6
По условию AD лежит в плоскости α.
Поэтому по т. о 3-х перпендикулярах В1А⊥AD и C1D⊥DA, и проекция квадрата ABCD на эту плоскость – прямоугольник АВ1С1D.
Угол В1АD - прямой.
Угол В1DА=60°(дано)
Проекция диагонали ВD на плоскость α – В1D и является гипотенузой
треугольника В1АD с прямым углом А.
B1D=AD:cos60°=6:1/2=12 (ед. длины)
———————
Мы получили <u>проекцию наклонной</u>, которая имеет большую длину, чем сама наклонная ВD. Т.е. в прямоугольном ∆ ВВ1D длина катета B1D больше длины гипотенузы BD, чего быть не может.
Но если
а) величина угла В1DА равна 30°,то проекция ВD на плоскост α равна AD:cos30°=4√3.
или
б) угол В1DB=60° - В1D=3√2– тоже допустимый результат.