Берем систему: 2а+в=24 и в-а=1,5 и решаем ее.
X+x+38=180
2x=180-38
2x=142
x=71 - 1 угол
71+38=109 - 2 угол
1) Тупоугольные, остроугольные, прямоугольные
2) Равнобедренные, равносторонние, разносторонние
<span>Проекцией является трекгольник АВС, О - точка пересечения диагоналей ромба.
AO=sqrt(AB^2-BO^2)=4 см </span><span> расстояние от K до BD = KO
KO=sqrt(AK^2+AO^2)=5 см </span>
Так как в равнобедренном треугольнике высота, проведенная к основанию, является медианой и биссектрисой, высота и биссектриса, о которых идет речь проведены из вершины при основании.
Высота и биссектриса отличаются в 2 раза. Проведены они к одной стороне, значит высота в 2 раза меньше биссектрисы (перпендикуляр к прямой всегда меньше наклонной)
АН - высота, АМ - биссектриса.
АМ = 2АН, тогда в прямоугольном треугольнике АМН ∠АМН = 30°.
Обозначим ∠МАС = х, тогда ∠ВАС = ∠ВСА = 2х.
Для треугольника МАС угол АМВ - внешний, равен сумме двух внутренних, не смежных с ним.
∠АМВ = ∠МАС + ∠МСА = х + 2х = 3х
1) Пусть ΔАВС остроугольный, тогда ∠АМВ = 180° - 30° = 150°
3x = 150°
x = 50°, но тогда углы при основании равнобедренного треугольника равны по 100°, что невозможно.
2) ΔАВС - тупоугольный. ∠АМВ = 30°
3x = 30°
x = 10°
∠ВАС = ∠ВСА = 20°
∠АВС = 180° - (20° + 20°) = 140°