Пусть общая высота конуса и пирамиды равна Н.
Обозначим объемы конуса и пирамиды через V1 и V2 соответственно ,
а их боковые поверхности – через S1 и S2
тогда V1=1/3pi*R^3H , S1=pi*RL ,
где L-образующая конуса.
Найдем V2 и S2.
Так как периметр основания пирамиды равен 2р ,
а основание конуса – вписанная в основание пирамиды окружность,
то площадь основания пирамиды равна pR,
откуда V2=1/3pRH, S2=pL (высота любой грани равна L).
Тогда
V1 : V2 =1/3piR^2H : 1/3pRH = pi*R/p
S1 : S2 =pi*RL : pL = pi*R/p
Ответ V1 : V2 = S1 : S2 = pi*R/p
Циркуль используй как карандаш, возьми транспортир замерь всё, и с помощью линейки проведи линии !
CosP= 0.125, то уголP≈82° 54минcosT=0.75, то уголT≈48°24 мин
Апофема, высота и радиус вписанной в основание окружности образуют прямоугольный треугольник в котором апофема равна:
l=r/cos30.
В правильном тр-ке радиус вписанной окружности равен: r=a√3/6.
l=a√3/6cos30=6·2√3/(6√3)=2 cм - это ответ.
№ 136.
Так как угол DFE равен углу DKE, угол KDE = угол DEF (по теореме о сумме углов треугольника), следовательно, KD параллельно EF так как эти углы накрест лежащие при пересечении KD и EF секущей ED. Доказано.
№137.
Пусть будут треугольники АВС (угол С прямой) и КМН (угол М прямой). СЕ и МО - высоты, СЕ=МО, угол ЕСВ = угол ОМН по условию. Докажем, что треугольники АВС и КМН равны. Рассмотрим треугольники ЕСВ и ОМН, они прямоугольный, они равны по катету (СЕ=ОМ) и острому углу. Значит, СВ=МН, угол В равен углу Н. Тогда прямоугольные треугольники АВС и МНК равны по катету и острому углу (ВС=МН, угол В = угол Н). Доказано.
№138.
Если угол НАС = угол Н1А1С1, то угол С = угол С1, следовательно, треугольники АНС и А1Н1С1 равны (по катету и острому углу). Значит, АС=А1С1, АН=А1Н1.
Треугольники АВН = А1В1Н1 по катету и гипотенузе, следовательно, угол ВАН = угол В1А1Н1, следовательно, угол ВАС= угол В1А1С1, значит, треугольник АВС равен треугольнику А1В1С1 по двум сторонам и углу между ними. Доказано