Не знаю только 1 с дробами
Общий знаменатель первой скобки:
(x-1)(x+1)(x-2)(x+2) = (x^2-1)(x^2-4)
Складываем числители. Я их напишу отдельно, чтобы не запутаться в скобках.
(x-1)(x^2-4) + (x+1)(x^2-4) + (x-2)(x^2-1) + (x+2)(x^2-1) - 2x(x^2-4) =
x^3-x^2-4x+4+x^3+x^2-4x-4+x^3-2x^2-x+2+x^3+2x^2-x-2-2x^3+8x =
4x^3-10x-2x^3+8x = 2x^3-2x = 2x(x^2-1)
Скобка (x^2-1) сокращается, остается дробь:
2x / (x^2-4)
Вторая скобка намного проще:
1/x + 1/x^2 = (x+1) / x^2
Умножаем их друг на друга
2x / (x^2-4) * (x+1) / x^2 = (2x+2) / [x(x^2-4)]
Как видим, то что надо, не получилось. Потому что в задаче опечатка. В 1 скобке в конце должно быть
- 2x/(x^2-4). Тогда числитель 1 скобки:
(x-1)(x^2-4)+(x+1)(x^2-4)+(x-2)(x^2-1)+(x+2)(x^2-1)-2x(x^2-1) =
4x^3-10x-2x^3+2x = 2x^3-8x = 2x(x^2-4)
Теперь сокращается (x^2-4) и остается
2x / (x^2-1) * (x+1) / x^2 = 2/(x-1) * 1/x = 2/(x^2-x)
Что и требовалось.
<span>определите, какая из прямых проходит через начало координат и псотройте ету прямую: у=2х-4, у=1/2, у=2.</span>
<span>
</span>
<span>из этих прямых ни одна не проходит через начало координат </span>
<span>начало координат точка (0;0) формула y=kx, где k-любое действительное число</span>
Так как делить на 0 нельзя, то х-3≠0⇒ х≠3
точка х=3 - точка разрыва данной функции
Следовательно, промежутки непрерывности х= (-∞;3)∪(3;+∞)