Прямая у=kх+b, проходящая через начало координат, b=0 и
<span>параллельные прямые имеют равные k, y=12x</span>
3. sin^2 x + 6sin x cos x + 8 cos^2 x = 0/cos²x
tg²x+6tgx+8=0
tgx=a
a²+6a+8=0
a1+a2=-6 U a1*a2=8
a1=-4⇒tgx=-4⇒x=-arctg4+πk,k∈z
a2=-2⇒tgx=-2⇒x=-arctg2+πn,n∈z
5. 2cos^2 x – 11sin 2x = 12
2cos²x-22sinxcosx-12sin²x-12cos²x=0/cos²x
12tg²x+22tgx+10=0
6tg²x+11tgx+5=0
tgx=a
6a²+11a+5=0
D=121-120=1
a1=(-11-1)/12=-1⇒tgx=-1⇒x=-π/4+πn,n∈z
a2=(-11+1)/12=-5/6⇒tgx=-5/6⇒x=-arctg5/6+πk,k∈z
6. 2sin^2 x – 3sin 2x – 4cos 2x = 4
2sin²x-6sinxcosx-4cos²x+4sin²x-4sin²x-4cos²x=0/cos²x
2tg²x-6tgx-8=0
tg²x-3tgx-4=0
tgx=a
a²-3a-4=0
a1+a2=3 U a1*a2=-4
a1=-1⇒tgx=-1⇒x=-π/4+πk,k∈z
a2=4⇒tgx=4⇒x=arctg4+πn,n∈z
F(x)=√(x²+2), x0=1;
tgα=k=f'(x0);
f'(x)=√(x²+2)'=2x*1/(2√(x²+2)=x/√(x²+2);
f'(1)=1/(√(1²+2)=1/√3=√3/3;
tgα=√3/3 ⇒α=30° - это угол между касательной и осью ОХ (абсцисс), значит острый угол между касательной и осью ординат (OY) равен
β=90°-30°=60°.
Ответ: 60°.
X6=x3-125
x6-x3=-125
x3=-125
x=-5