ДОКАЗАТЕЛЬСТВО
<span>Через середины боковых сторон трапеции проведена прямая 1.</span>
<span>На прямой 1 лежит средняя линия трапеции.</span>
<span>Средняя линия трапеции параллельная основаниям.(свойство средней линии)</span>
<span>Допустим прямая 1 НЕПАРАЛЛЕЛЬНА плоскости альфа , следовательно и средняя линия НЕПАРАЛЛЕЛЬНА одному из оснований в плоскости альфа.</span>
<span>Значит не выполняется свойство трапеции.</span>
<span>Значит <span> прямая 1 паралельна плоскости альфа.</span></span>
а)Около четырехугольника можно описать окружность, если суммы углов равны 180°.
По теореме косинусов из треугольника АВС:
АC2=AB2+CB2–2·AB·CB·cos∠B
49=9+25–30·cos∠B
cos∠B=15/(–30)=–1/2
По теореме косинусов из треугольника АDС:
АC2=AD2+CD2–2·AD·CD·cos∠D
49=64+25–80·cos∠D
cos∠D=(–40)/(–80)=1/2
Таким образом косинусы углов B и Dпротивоположны, значит ∠В+∠D=180° и около четырехугольника можно описать окружность.
б)По теореме косинусов из треугольника BAD:
BD2=BA2+DA2–2·BA·DA·cos∠A
BD2=9+64–48·cos∠A
cos∠A=(73–BD2)/48
По теореме косинусов из треугольника ВСD:
BD2=BC2+DC2–2·BC·DC·cos∠C
BD2=25+25–50·cos∠C
cos∠C=(50–BD2)/50
Угла А и С так же в сумме дают 180 °, значит значения косинусов этих углова противоположны, таким образом:
(73–BD2)/48=–(50–BD2)/50
(73–BD2)/48=(BD2–50)/50
(73–BD2)·50=(BD2–50)·48
73·50–50 BD2=48 BD2–48·50
48 BD2+50 BD2=73·50+48·50
98 BD2=121·50
BD2=(121·50)/98
BD2=(121·25)/49
BD=(11·5)/7=55/7

Равнобедренная трапеция - трапеция, у которой боковые стороны равны. Следовательно, равны углы при верхнем основании и углы при нижнем основании.
α1=α2=α - тупые углы
β1=β2=β - острые углы
По условию α-β=6; α=β+6.
Углы α и β односторонние при параллельных прямых и секущей. Т.о. α+β=180
Решаем:
2β+6=180
2β=174
β=87; α=87+6=93
Пусть один гол х, тогда другой 17х, а их сумма как смежных равна 180 град. Значит х+17х=180 18х=180 х=10 17х=170
Ответ: 10 и 170 град