---------------------------
Ответ:
четвертое х€(2,3;∞)
Объяснение
Дано неравенство.Линейная функция (3-х) убывающая, а показательная (3^х) возрастающая для всех х€R.
При х=0 3>1-неравенство не выполняется, значит возможные решения лежат в интервалах 2 и 4.
При х=0.7 2.3>2.158 -неравенство не выполняется, значит х=0.7 и бесконечно близкие к нему значения не входят в область решений. Возьмем х=0.74, получим 2.26>2.255 -опять не выполняется, а при х=0.742 2.258<2.260 -выполняется. Значит нижней границей интервала значение х=0.7 не является, поскольку при значениях 0.7<х<0.74 (например) неравенство не выполняется.
На 4м интервале неравенство верное для всех х этого интервала, включая даже х=2.3
х²+11х+28 =
= х² + (8х+3х) + (16+12) =
= (х²+8х+16)+(3х+12) =
= (х+4)²+3·(х+4)=
= (х+4)·(х+4+3)=
= (х+4)·(х+7)
Ответ: х²+11х+28 = (х+4)·(х+7)