<span>(7a + 1)²</span><span> </span><span>- 28a</span>
<span>49a²+14a+1-28a</span>
<span>49a²-14a+1=0</span>
<span>a²-2/7a+1/49=0</span>
<span>a=1/7±√1/49-1/49</span>
<span>a=1/7</span>
1) f'(x) = 1/√((1-2x)/(1+2x)) * (1/2√(1-2x)/(1+2x))* ((1-2x)/(1+2x))'=
= 1/√((1-2x)/(1+2x)) * (1/2√(1-2x)/(1+2x))*(-2)(1+2x)-2(1-2x)/(1+2х)²=
= 1/√((1-2x)/(1+2x)) * (1/2√(1-2x)/(1+2x))* (-2-4х-2 +4х)/(1+2х)²=
=- 1/√((1-2x)/(1+2x)) * (1/2√(1-2x)/(1+2x))*4/(1+2х)²
2)у = √х*Cosx
y'=1/2√x*Cosx - √x*Sinx
3) f(x) = e^Sin4x
f'(x) = e^Sin4x * Cos4x*4
f'(0)= e^0*Cos0*4 = 1*1*4 = 4
4) f(x) (3x-4)*ln(3x-4)
f'(x) =3*ln(3x-4) + (3x-4)*3/(3x-4)= 3ln(3x-4) +3
5)f(x)=5^lnx
f'(x) = 5^lnx*1/x*ln5
6) f(x) = Ctg(2x + π/2) + (x-π²)/х = -tg2x + (x-π²)/х
f'(x) = -2/Cos²2x + (x - x + π²)/х² = -2/Cos² 2x + π²/x²
f'(π/12) = -2/Сos² π/6 + π²/π/12 = -3/2 + 12π
Используйте ТеХ, легче будет всем.
Х/2=3х-5
х/2-3х=-5
-5/2х=-5
х=2
у=х/2=2/2=1
А(2;1)
<span>9^5</span><span> = </span><span>59049
</span><span>3^3</span><span> = </span><span>27
</span>8^3= <span>549755813888
</span>59049*27/549755813888=1594323/549755813888=<span>0,00000290005</span>