Пусть диагонали ОСНОВАНИЯ (не параллелепипеда) m и n, а высота (она же боковая сторона) h,тогда h = m*tg(60) = n*tg(45); тот есть m*корень(3) = n (и равно = h); Теперь смотрим на основание. Параллелограмм, у него стороны 17 и 31, и отношение диагоналей m/n = корень(3). Обозначим острый угол A. Тогда n лежит напротив него (а m - напротив тупого угла 180 - А).
m^2 = 17^2 + 31^2 + 2*17*31*cos(A);
n^2 = 17^2 + 31^2 - 2*17*31*cos(A);
(m/n)^2 = 3 = (17^2 + 31^2 + 2*17*31*cos(A))/(17^2 + 31^2 - 2*17*31*cos(A));
<span>2*17*31*cos(A) = (17^2 + 31^2)/2; ( На первый взгляд кажется, что нам нужен угол А, но))
</span><span>n^2 = h^2 = (17^2 + 31^2)/2 = 625; n = h = 25; m = n*корень(3) = 25*корень(3);
</span><span>d1 = n/cos(45) = 25*корень(2);
</span><span>d2 = m/cos(60) = 50;</span>
<span>Необходимо описать окружность около треугольника . Чтобы медиана была равна половине стороны ВС, необходимо, чтобы ВС была диагональю окружности. По св. это возможно только при прямом угле BAC.</span>
Найдем катет ВС прямоугольного треугольника ABC. По теореме Пифагора ВС=sqrt(41-25)=4. tg-отношение противолежащего катета к прилежащему, то есть tgA=BC/Ac=4/5
Сторону а основания найдём по теореме косинусов:
а = √(8²+8²-2*8*8*(√3/2)) = 8√(2-√3) ≈ <span><span>4,1411047 см.
Далее можно идти двумя путями:
-1) по формуле Герона по трём сторонам найти площадь грани и умножать её на 6,
-2) найти высоту Н грани, и по ней и периметру основания найти площадь боковой поверхности.
1) S = </span></span>√(p(p-a)(p-b)(p-c)).
р = (2*8+4,1411047)/2 = <span><span>10,07055 см.
Подставляем:
S = </span></span>√(10,07055*<span>2,07055236 *5,9294476 *2,0705524)
= </span>√<span>256 = 16 см</span>².
Тогда Sбок = 6S = 6*16 = 96 см².
2) Периметр основания Р = 6а = 6*4,1411047 = <span><span>24,84663 см.
</span></span> Н = 8*cos 15° = 8*<span>0,965926
=
<span>7,72740661 см.
</span></span>Sбок = (1/2)РН = (1/2)*24,84663*7,72740661 = 96 см².
Где этот угол Д? Он там не отмечен....