1) тр-к АЕД - равнобедренный, значит угол ЕАД равен углу АЕД
2) Тр-к ВСЕ - равнобедр., значит угол СВЕ равен углу СЕВ
3) Сумма углов СЕВ, х+50 и АЕД равна 180 градусов (образуют развернутый угол), значит в треугольнике АВЕ углы АВЕ и ВАЕ равны углам ВЕС и ЕАД соответственно, тогда ВЕ - биссектриса угла В, а АЕ - бис-са угла А
4) Угол В и угол А - смежные углы параллалограмма, в сумме сост. 180 градусов, а углы АВЕ и ВАЕ - их половины, т.е. в сумме сост. 90 градусов. Тогда угол х+50 равен 90 градусов, а х=40 градусов
Площадь прямоугольного треугольника вычисляется по формуле:
, где <em>а</em> и <em>b</em> - катеты.
<em>а=3, b=22 </em>по усвловию
Ответ: площадь прямоугольного треугольника 33 кв. ед.
25) Треугольники АВС и DВЕ подобные, коэффициент подобия равен АВ/ВD=4, все стороны треугольника АВС будут больше соответственных сторон треугольника DВС в 4 раза.
Построим высоту ВМ в треугольнике АВС, соответственно ВК будет высотой в треугольнике DВС.
Допустим, что ВК=х, DЕ=у, тогда АС=4х, ВМ=4у.
Определим площадь треугольников DВЕ и АВС.
S1 - площадь треугольника DВЕ,
S2 - площадь треугольника АВС.
S1=0,5ВК·DЕ=0,5ху,
S2=0,5ВМ·АС=0,5·4х·4у=8ху.
Обозначим площадь трапеции АDЕС - S3=60.
S2-S1=S3,
8ху-0,5ху=60,
7,5ху=60,
ху=8.
S2=8·8=64 (кв. ед.)
Ответ: 64 кв. ед.
29) По свойству биссектрисы треугольника имеем:
ВD:СD=АВ:АС,
9:15=х:18,
х=9·18:15=10,8.
Ответ: 10,8 (л. ед)
Ответ: 10,8 л.ед.
30) По свойству биссектрисы треугольника
LM:LR=MN:NR,
y:x=14:10.5;
x=0,75y.
x+y=20;
0,75y+y=20;
1,75y=20;
y=80/7.
x=20-(80/7)=60/7.
Ответ: 60/7; 80/7.
31) Треугольник ВСD равнобедренный (два угла равные). ВD=ВС=8.
ВD- биссектриса, по свойству биссектрисы
СD:АD=ВС:АВ;
х:10=8:15;х=80/15=5(3).
Ответ: 5,(3)