Треугольники АСС1 и АВВ1 подобны по двум углам. следовательно АС/АВ=СС1/ВВ1. СС1=(15*5)/3=25
Ответ:
AH:
(AD-BC):2=(18-8):2=10:2=5 см
HD:
(AD-AH)=18-5=13см
Объяснение:
1. Рассмотрим параллелограмм АВСД
диагонали пересекаются в точке О
площаль АОД=площадь ВОС
SAOD+SBOC=2*(½АО*ОД* синус альфа)=АО*ОД*синус альфа
SAOB=SCOD
SAOB+SCOD=2(½АО*ОВ* синус альфа)=АО*ОВ*синус альфа
так как площаль параллелограмма состоит из площади этих треугольников, то
SAOD+SBOC+SAOB+SCOD=АО*ОД*синус альфа+АО*ОВ*синус альфа= АО*синус альфа(ОД+ОВ)=АО*синус альфа*ВД
так как АО=проловине АС (так какдиагонали паралл длятся точкой пересечения пополам) то площадь параллелограмма равна ½АС*ВД*синус альфа
znanija.com/task/643289#readmore
Проведем через вершину сечение, перпендикулряное стороне основания. В нем построим треугольник, стороны которого - апофема d (высота боковой грани), высота пирамиды (перпендикуляр из S на основание, другой конец этого отрезка - центр квадрата в основании), и отрезок, соединяющий центр квадрата с серединой боковой стороны, он равен половине стороны основания а. Нам задана высота этого треугольника, проведенная к гипотенузе d, она равна 2. (Эта высота перпендикулярна 2 прямым в плоскости бокового ребра - апофеме и стороне основания, то есть - это перпендикуляр ко всей плоскости боковой грани.)
В этом треугольнике нам задан так же угол в 60 градусов.
Далее все очевидно
d*cos(60) = a/2; Sбок = 4*d*a/2 = 4*(a/2)^2/cos(60);
a/2 = 2/sin(60); (a/2)^2 = 4/(3/4) = 16/3;
Sбок = 2*4*16/3 = 128/3
площадь основания в 2 раза меньше (Sбок*cos(60)), это 64/3. А ВСЯ площадь поверхности будет 64.