<span>y' = tg' x + ctg' x = 1/(cos^2 (x) ) + (- 1/(sin^2 (x) ) = 1/(cos^2 (x) ) - 1/(sin^2 (x) ) = 1/(sin^2 (x) * cos^2 (x) ) = [(1-cos(2x))/2 ]*[(1+cos(2x))/2] = (1-cos^2 (2x) )/4</span>
Ctg(π-α)=-ctgα
ctg(α+π)=ctgα
ctg(α+2π)=ctgα
-3ctgα-ctgα+ctgα=-3ctgα=-3·0,15=-0,45
Х+х/2=-9. Х*2+х/2*2=-9*2 2х+х=-18 3х=-18 х=6
7<span>^x - (1/7)<span>^(1-x) = 6</span></span>