Треугольники равны по двум сторонам и углу между ними,ас=bd и углы по условию,ad общая.
2)периметр abc=ab+bc+ac, ab=bc, ad=dc
ab+ad=Pabd-bd=18-7=11
Pabc=ab+ad+ab+ad=11+11=22 см
А2. 1 - верно, если трапеция равнобедренная; 2 - верно; 3 - не верно, по признаку надо 3 прямых угла; 4 - верно.
А3. 4см
А4. 120 градусов, чертёж не знаю
Используем саму формулу Герона,найдём площадь треугольника
S=корень(р*(р-а)*(р-в)*(р-с))
р(полу-метр)=(8+6+4)/2=9см S²=9*1*3*5=135,тогда S=3*(корень из 15)
2)меньшая высота треугольника Н опущена на большую сторону 8 сантиметров,тогда
S=0,5*8*Н=3*(корень из 15 )Н=0,75(корень из 15)
Пусть треугольник будет АВС, высота- СН, высота проведенная к гипотинузе АВ, делит на два прямоугольных треугольника АСН и СНВ, суть в том, что там угол ВАС=углу ВСН и угол АВС=углу АСН, нужно посмотреть градусную меру известных и по ним постоить неизвестные
Прямоугольные треуг-ки ВНС и АН1С подобны по первому признаку подобия: два угла одного треуг-ка соответственно равны двум углам другого. В нашем случае углы АН1С и ВНС прямые, а угол С - общий. Для подобных треугольников можно записать отношение сходственных сторон:
ВН:АН1=10:12, k=5/6, СН:СН1=5:6, отсюда
CH1=6CH:5
В прямоугольном треуг-ке АН1С по теореме Пифагора находим АС:
АС²=AH1²+CH1²
Т.к. в равнобедренном треуг-ке АВС высота ВН, проведенная к основанию, является также и медианой, то СН=1/2АС, и выражение CH1=6CH:5 примет такой вид:
СН1=3АС:5.
Это значение для СH1 будем использовать в вычислении по теореме Пифагора:
АС²=12² + 9AC²/25
AC² - 9AC²/25=144
16AC²=3600
AC² = 225
AC=15 см
<span>S ABC = 1/2AC*BH=7,5*10=75 см</span>²