Обозначим скорость движения первого велосипедиста за х. Тогда скорость второго велосипедиста х + 10.
Так как расстояние между населенными пунктами 60 км, то весь путь первого велосипедиста длился 60/х часов; а путь второго велосипедиста длился 60/(х + 10) часов.
Второй велосипедист выехал на полчаса позже и приехал в населенный пункт на полчаса раньше первого велосипедиста, следовательно, его путь длился на 1 час меньше.
Составим и решим уравнение:
60/х - 60/(х + 10) = 1;
60(х + 10) - 60х = x^2 + 10х;
x^2 + 10х - 600 = 0;
По теореме обратной теореме Виета:
х1 = 20;
х2 = - 30 - не удовлетворяет условиям задачи так как скорость не может быть отрицательной.
Итак, скорость первого велосипедиста 20 км/ч.
Ответ: 20 км/ч.
18_03_09_Задание № 1:
Вычислите (2−1)(2+1)(2^2+1)(2^4+1)(2^8+1)−2^16
РЕШЕНИЕ: (2−1)(2+1)(2^2+1)(2^4+1)(2^8+1)−2^16=(2^2−1^2)(2^2+1)(2^4+1)(2^8+1)−2^16=(2^2−1)(2^2+1)(2^4+1)(2^8+1)−2^16=(2^4−1^2)(2^4+1)(2^8+1)−2^16=(2^4−1)(2^4+1)(2^8+1)−2^16=(2^8−1^2)(2^8+1)−2^16=(2^8−1)(2^8+1)−2^16=2^16−1^2−2^16=-1
ОТВЕТ: -1
<em>Здесь количество ступеней взято за время , потому что как бы на раз человек делает одну ступеню , на два вторую ступеню итд </em>