х+у=с у=1:х
у=с-х у=1:х
с-х=1:х *х
сх-х^2-1=0
x^2-сх+1=0
D=с^2-4 т.к. прямая и гипербола касаются в одной положительной точке,то D=0
с^2-4=0
с=2 с=-2 - не удвл.условие задачи
ответ:с=2
(x^2+11)*(x^2 +11-12x)<=0;
(x^2+11)*(x^2-12x+11)<=0;
x^2+11>0 при любом х;
x^2-12x+11<=0;
x1=1; x2=11;
(x-1)*(x-11)<=0; методом интервалов получим решение неравенства.
1<=x<=11.
Дальше у меня вопрос: что за сумму надо найти, здесь же не корни, а интервал. Может надо найти сумму всех целых корней?. Если так, то сумма всех целочисленных решений неравенства будет равна
1+2+3+4+5+6+7+8+9+10+11=66
M(1-m^2)=m(1-m)(1+m)
p^2(p^2-1)=p^2(p-1)(p+1)
y^2(1-y)
1)Пусть скорость = х.
Скорость по течению: х+2
Против течения: х-2
Ответ: 34 км/ч.
2)Пусть скорость течения - х.
Ответ: 2 км/ч.
ОДЗ sinx≠0⇒x≠πn
2cos²x-cosx-1=0
cosx=a
2a²-a-1=0
D=1+8=9
a1=(1-3)/4=-1/2⇒cosx=-1/2⇒x=+-2π/3+2πn
a2=(1+3)/4=1⇒cosx=1⇒x=2πn,не удовл ОДЗ
х=-4π/3;-2π/3;2π/3;4π/3