Решение###########################
При х≥0 |x|=x
y=(4x-1)/(x-4x^2)=(4х-1)/(-х·(4х-1))=-1/x если х≠1/4
Строим гиперболу у=-1/х в 4-ой четверти, там где х>0.
Точка (1/4; -4) выколота, так как х≠1/4
При х < 0 |x|=-x
y=(-4x-1)/(-x-4x²)=(4x+1)/x(4x+1)=1/x, если х≠-1/4
Строим гиперболу у=1/х в 3-ей четверти, там где х< 0.
Точка (-1/4; -4) выколота, так как х≠-1/4
F(x) = x^4/4 + x^3/3 - x^2
f'(x) = x^3 + x^2 - 2x
x^3 + x^2 - 2x =0
x(x^2+ x - 2) =0
x(x+2)(x-1)=0
x=0 или x = -2 или x=1
Отметим эти точки на числовой оси, рассматриваем участки, где производная положительная (отрицательная), тем самым выясним, где функция возрастает (убывает)
- + - +
------(-2)-------(0)-------(1)--------->x
x= - 2 - точка минимума
х= 0 - точка максимума
х = 1 - точки минимума
Функция возрастает на [-2;0]U[1;+беск)
Функция убывает на (-беск;-2]U[0;1]