Решение
<span>5sinx+cosx=5
Применяя формулы:
sinx = sin2*(x/2); cosx = cos2*(x/2)
sin</span>²x/2 + cos²x/2 = 1
Получим уравнение:
5* sin2*(x/2) + cos2*(x/2) = 5*(sin<span>²x/2 + cos²x/2)
5*(2sinx/2 * cosx/2) + (cos</span>²x/2 - sin²x/2) = 5*(sin<span>²x/2 + cos²x/2)
10</span>sinx/2 * cosx/2 + cos²x/2 - sin²x/2 - 5sin<span>²x/2 - 5cos²x/2 = 0
- 6sin</span>²x/2 + 10sinx/2 * cosx/2 - 4cos²x/2 = 0 делим на (- 2cos²x/2 ≠ 0)
3tg²x/2 - 5tgx + 2 = 0
tgx = t
3t² - 5t + 2 = 0
D = 25 - 4*3*2 = 1
t₁ = (5 - 1)/6 = 4/6 = 2/3
t₂ = (5 + 1)/6 = 6/6 = 1
tgx = 2/3
x₁ = arctg(2/3) + πk, k ∈ Z
tgx = 1
x₂ = π/4 + πn, n ∈ Z
Решение:
Воспользуемся формулой арифметической прогрессии:
an=a1+d*(n-1)
Из этой формулы найдём разность арифметической прогрессии (d)^
a10=a1+d*(10-1)
-49=-1+d*9
9d=-49+1
9d=-48
d=48/9=5ц 1/3
Для доказательства подставим известные нам данные в формулу an-члена, известного, что он равен (-86) и найдём число (n) этой прогрессии:
-86=-1+(-5ц1/3)*(n-1)
-86=-1-16n/3+16/3
Приведём к общему знаменателю (3):
-258=-3-16n+16
16n=258-3+16
16n=271
n=271/16≈16,9-число не натуральное, следовательно число (-86) не может быть членом данной арифметической прогрессии.
1) 2tg^2(x)+3tg(x)-2=0
tg(x)=t
2tg^2(t)+3t-2=0
D=b^2-4ac=25
t1,2=(-b±√D)/2a
t1=-2
t2=0,5
a) tg(x)=-2 => x=arctg(-2)+pi*n
б) tg(x)=0,5) => x=arctg(0,5)+pi*n
4) cos(2x)=2cos(x)-1
2cos^2(x)-1`=2cos(x)-1
2cos^2(x)-2cos(x)=0
2cos(x)*(cos(x)-1)=0
a) cos(x)=0 => (pi/2)+pi*n
б) cos(x)-1=0 => cos(x)=1 => (pi/2)+2pi*n
6) sin(7x)-sin(x)=cos(4x)
2sin(3x/2)*cos(4x)=cos(4x)
2sin(3x/2)*cos(4x)-cos(4x)=0
cos(4x)*(2sin(3x/2)-1)=0
a) cos(4x)=0 => 4x=(pi/2)+pi*n => x=(pi/8)+pi*n/4
б) 2sin(3x/2)-1=0 => 2sin(3x/2)=1 => sin(3x/2)=1/2 => 3x/2=(pi/6)+pi*n =>
3x=(pi/3)+2*pi*n => x=(pi/9) +2*pi*n/3
1)11х+8<х+5(2+3х) 2)4х+7(1-2х)<1-9х х>-0,4
11х+8<х+10+15х 4х+7-14х<1-9х
11х-15х-х<10-8 4х-14х+9х<1-7 {
-5х<2 -х<-6
5х>-2 х>6 х>6
х>-о,4