Вообщем тебе нужно из десятичной дроби перевести в обыкновенную. Вот как это делается
y'=-2/(1+x)^2-8x=-(x^2+10x+3)/(1+x)^2
y'(1)=-14/4=-3,5
y(1)=-4
-4=-3,5*1+c
c=-0,5
y=-3,5x-0,5 касательная
k=-1/-3,5=2/7
-4=2/7*1+c
c=-4-2/7=-30/7
y=2/7x-30/7
104/16= 6,5
112/16=7
92/16=5,75
96/16=6
1)1 по основному тригонометрическому тождеству представим как sin²x + cos²x:
cos²x + sin x cos x - sin²x - cos²x = 0
sinx cos x - sin²x = 0
Данное уравнение не является однородным, поэтому делить на cos²x нельзя(точнее можно, но не нужно). Разложим левую часть уравнения на множители:
sin x(cos x - sin x) = 0
sin x = 0 или cosx - sin x = 0
Решаем первое уравнение:
x = πn, n∈Z
Второе уравнение - однородное первой степени. Делим его почленно на cos x, поскольку он не может быть нулевым:
1 - tg x = 0
tg x = 1
x = π/4 + πk, k ∈ Z
Всё, эти два решения и есть корни данного уравнения.
2)Здесь судя по всему надо ввести замену. Пусть tg x = t, тогда выходим на кубическое уравнение:
t³ + t² - 3t - 3 = 0
(t³ + t²) - (3t + 3) = 0
t²(t + 1) - 3(t+1) = 0
(t+1)(t² - 3) = 0
t+1 = 0 или t² - 3 = 0
t = -1 t² = 3
t1 = √3; t2 = -√3
Тогда получаем совокупонсть из трёх уравнений:
tg x = -1 или tg x = √3 или tg x = -√3
x = -π/4 + πn, n∈Z x = π/3 + πk, k∈Z x = -π/3 + πm, m∈Z
1 корень - 1 часть
2 корень - 5 частей
сумма корней равна коэффициенту при х с обратным знаком
6частей - 12 1 часть=2
1 корень 2, другой 10. q=произведению корней =20