Решение смотри в приложении
1.
Эту задчу можно решить, используя теорему Пифагора. Чтобы Вам было понятно, какую фигуру девочка описала, давайте вспомним направление сторон Света.
Север - вверх
Юг - вниз
Восток - вправо
Запад - влево.
Значит девочка прошла 500 м влево, затем еще 300 м вверх и 100 м вправо. Обозначим начальный и конечные пункты точками А и В соответственно. Соединим эти точки прямой. Это прямоугольная трапеция, а отрезок АВ равен расстоянию девочки от дома. Опустим высоту из точки В по направлению вниз к прямой а. Обозничим точку пересечения высоты и прямой буквой С. Получился треугольник АВС. Теперь необходимо найти длину стороны АС:
АС = 500 - 100 = 400 (м)
ВС = 300 (м)
По теореме Пифагора:
В треугольнике АВС
АВ^2 = AC^2 + BC^2 => AC = sqrt(AC^2 + BC^2) = sqrt(400^2 + 300^2) = sqrt(250000) = 500 (м)
Ответ: 500 м
2.
Север - вверх
Запад - влево
И это опять треугольник. Длины сторон находите, умножая скорость на 2.
Пусть это треугольник АВС.
AC = 2*20 = 40 (км)
ВС = 2*15 = 30 (км)
По теореме Пифагора:
В треугольнике АВС
АВ^2 = AC^2 + BC^2 => AC = sqrt(AC^2 + BC^2) = sqrt(40^2 + 30^2) = sqrt(2500) = 50 (км)
Ответ: 50 км