Есл ВМ - биссектриса треугольника, то делит уго СВД пополам, тогда ∠ДВМ=∠СВМ=60°/2=30°
а против угла в 30° лежит катет, равный половине гипотенузы, значит, ВМ=16 см, т.к. в ΔВСМ ВС - гипотенуза, и из этого треугольника найдем катет ВС =√(ВМ²-СМ²)=√(16²-8²)=√(24*8)=8√3 /см/
Из ΔВСД ВС лежит против угла в 30°, значит, равен половине гипотенузы ВД, т.е. ВД= 16√3
И наконец из того же треугольника находим
СД=√(ВД²-ВС²)=√(16²*3-8²*3)=√(3*(16-8)()16+8))=√(3*8*24)=24/см/
Ответ 24 см.
2способ
Можно решать через тригонометрию, но не знаю, проходили ли Вы этот материал. А теорему ПИфагора знают все.)
150 см в кв.
5*5=25
25*6=150
<h2>
<em>Как-то так....</em></h2>
<em>удачи</em><em>:</em><em>)</em><em> </em><em />
Пусть основание AB будет x. Тогда AC=2x (в два раза больше).
Т.к. это равнобедренный треугольник, то АС=ВС=2х.
Чтобы найти периметр треугольника, нужно сложить все его стороны:
2х+2х+х=25,5
5х=25,5 |:5
х=5,1
Теперь находим сами стороны:
АС=ВС=10,2
АВ=5,1
Ответ:
АС=10,2
ВС=10,2
АВ=5,1
) по ф. Герона найди площадь треуг. АВС;
<span>1) Площадь тругольника по формуле Герона равна корню из произведения разностей полупериметра треугольника (p) и каждой из его сторон (a, b, c): </span>
<span>p = 1/2 (17+15+8) = 20 </span>
<span>Sabc = sqrt 20((20-17)(20-15)(20-8)) = sqrt 3600 = 60 </span>
<span>2) используя то, что биссектриса делит треугольник на две, площади которые относятся как заключающие её стороны получим: </span>
<span>AB:AC = BO:OC = 17:8</span>