так как треугольник авс- правильный,и ад=дв,то сд перпендикулярно ав.тогда ав перпендикулярно дм по теореме о трех перпендикулярах. т.к.,ав перпенд. дм и дс,которые принадлежат плоскости (дмс),то ав перпенд. и плоскости (дмс).
Дано:ABCD-пирамида,abcd-3*√6,V=54cм³.
<span>CO-?
</span>Решение:V=1/3*S<span>abcd*CO
</span>Sabcd=3*√6=7.34²=54cм²
CO=V*3/S<span>abcd
</span><span>CO=54*3/54=3см
</span>Ответ:CO=<span>3см</span>
Проведем высоту трапеции СН. АС биссектриса прямого угла, значит угол САН=45° и АН=СН.
По Пифагору <span>АС²=АН²+СН². 36=2АН². АН=СН=3√2.
</span>В прямоугольном треугольнике НСD: угол НDС равен 60°, значит <HCD=30°. <span>Против угла 30° лежит катет, равный половине гипотенузы.
Тогда по </span>Пифагору: СD²=HD²+СН² или <span>4HD²-HD²=СН² или 3HD²=18.
Тогда HD=√6. </span>Основание трапеции АD=АН+HD=3√2+√6.
Итак, АD=3√2+√6, ВС=АН=3√2, СН=3√2.
Площадь трапеции S=(ВС+АD)*СН/2 или
S=(3√2+3√2+√6)*3√2/2=(36+3√12)/2=(36+6√3)/2=18+3√3.
Ответ: S=18+3√3.
Можно и так:
Площадь трапеции равна сумме площадей квадрата АВСН и треугольника <span>НСD, то есть АН*СН+(1/2)СН*НD или
S=18+(1/2)*3√2*√6=18+3√3.</span>
1. Т.к. АВ=ВС=10, то тр.АВС равнобедренный.
2. Если О- центр вписанной окружности, то О- центр тр.АВС => биссектриссы тр., проведённые из равных углов будут равны и точкой пересечения делиться в отношении 2:1.
3. Найдём одну из них. Биссектрисса в равноб. тр.АВС будет высотой и медианой => сторона ВС будет разделена пополам, и образуется прямоугольный тр.ВМС,где К=90гр. и является серединой ВС. По т. Пифагора найдём АМ. АМ=9см.
4. ОМ=1/3 АК=3см.
5. Т к. ОК перпед. АВС, то тр.ОКМ - перпендикулярный. По т. Пифагора найдем КМ. КМ=5см. Ч. т. д.
S бок.пов-ти пирамиды=сумме площадей бок.граней пирамиды