x= 5
так как 17/ 2 = 5 а остаток 7
Как известно, для любого a -1<cosa<1, 0<cosa^2<1 , следовательно максимальное значение выражение достигает при cosa^2 = 1, а минимальное, при cosa^2 = 0<span> </span><span> </span> <span> </span> Как известно, для любого a -1<sina<1, 0<sina^2<1 , следовательно максимальное значение выражение достигает при sina^2 = 1, а минимальное, при sina^2 = 0<span />
B1•q^3=80/3
-90•q^3=80/3
q^3=-80/(3•90)
q^3=-8/27
q=-2/3
b1 -90. -90
S = ---- = --------- = ----- = (90•3)/5 = 54
q–1 -2/3–1 -5/3
Чтобы купить 2 литра сметаны, Маша может купить 2:0,25=8 пакетов по 0,25 литров и по 60 рублей каждый. Предположим, что цена одного пакета сметаны объёмом 0,25 литров x=60 рублей, тогда без акции Маша заплатит за сметану 8x рублей. По условию акции цена трёх пакетов сметаны объёмом 0,25 литров равна цене двух таких же пакетов, то есть 3x=2x. Представим число 8x как 8x=3x+3x+2x. Значит, по акции Маша заплатит 2x+2x+2x=6x рублей, то есть 60*6=360 рублей. Также Маша может купить 2 литра сметаны, купив 2:0,5=4 пакета сметаны по 0,5 литров и 85 рублей каждый. В этом случае Маша заплатит 85*4=340 рублей. Как видим, для Маши выгоднее купить 4 пакета сметаны по 0,5 литров и 85 рублей каждый, и 340 рублей -- наименьшая сумма, которую она потратит на покупку двух литров сметаны.
Ответ: 340 рублей.